PROGRAM LINEAR
A. Daerah Penyelesaian Sistem Pertidaksamaan Linear 2 Variabel
Dari pertidaksamaan 4x + 3y – 12 ≥ 0, tentukan daerah penyelesaiannya!
Langkah-langkah untuk menentukan daerah penyelesaian adalah sebagai berikut:
- Pindahkan variabel ke ruas kiri dan konstanta di ruas kanan. 4x + 3y ≥ 12
- Ubah tanda pertidaksamaan menjadi sama dengan. 4x + 3y = 12
- Tentukan titik poinnya, kalau akan menggunakan sumbu-x berarti y=0, sebaliknya kalau menggunakan sumbu-y berarti x=0.
- Gambar titik potongnya.
- lakukan uji titik untuk mendapatkan daerah penyelesaiannya. Kita ambil titik yang berada di dalam garis (kiri garis). Misalnya titik (2,0). Sekarang kita substitusi ke dalam persamaan 4x + 3y ≥ 12 menjadi 4(2) + 3(0) ≥ 12, hasilnya 8 ≥ 12.
- Kira-kira benar gak kalau 8 lebih besar sama dengan 12? Salah ya, berarti daerah penyelesaiannya ada di kanan garis atau di luar garis.
Dari situ sudah paham ya, kalau hasil uji titiknya salah, berarti daerahnya ada di luar garis (kanan), sedangkan hasil uji titiknya benar, maka daerahnya ada di dalam garis (kiri).
Lalu, apa sih perbedaan antara notasi ≥ dan > atau ≤ dan <?
Letak perbedaannya ada pada garis. Untuk notasi yang ada sama dengannya (=) misal lebih besar sama dengan (≥) dan kurang dari sama dengan (≤), maka garisnya nyambung, tidak terputus seperti pada contoh penyelesaian daerah di atas. Sedangkan, untuk notasi lebih dari (>) dan kurang dari (<), garisnya putus-putus seperti ini.
B. Program Linear dan Model Matematika
- Langkah-langkah menuliskan persoalan sehari-hari ke dalam model matematika adalah sebagai berikut.
- Tuliskan ketentuan-ketentuan yang ada ke dalam sebuah tabel.
- Buat permisalan untuk objek-objek yang belum diketahui dalam bentuk variabel x dan y.
- Buat sistem pertidaksamaan linear dari hal-hal yang sudah diketahui.
- Tentukan fungsi objektif.
- Selesaikan model matematika tersebut untuk mendapatkan nilai optimum dari fungsi objektif.
- Model matematika terdiri atas dua bagian, yaitu:
- Fungsi objektif, yakni f(x, y) = px + qy
- Syarat atau batasan yang berisikan kendala-kendala yang harus dipenuhi oleh variabel x dan y
Nilai optimum fungsi objektif adalah nilai maksimum atau minimum fungsi objektif sebagai hasil dari substitusi titik-titik ekstrem terhadap fungsi linear f(x, y) = px + qy, penjabarannya sebagai berikut.
1. Nilai Maksimum Fungsi Objektif
Nilai maksimum f(x, y) = px + qy dengan kendala:
ax + by ≤ m
cx + dy ≤ n
x ≥ 0 ; y ≥ o
2. Nilai Minimum Fungsi Objektif
Nilai minimum f(x, y) = px + qy dengan kendala:
ax + by ≥ m
cx + dy ≥ n
x ≥ 0 ; y ≥ o
C. Penyelesaian Masalah Program Linear
1. Ada seorang pedagang buah naga sedang memanen hasil kebunnya. Dia menyewa 30 kendaraan jenis truk dan colt dengan total muatan sebanyak 300 karung. Setiap truk hanya mampu menampung 15 karung dan colt hanya mampu mengangkut 10 karung. Tentukanlah bentuk model matematikanya.
Pembahasan :
Dalam mengerjakan soal cerita seperti ini, Kita dapat melakukan pemisalan pada truk dan colt. Kita anggap truk sebagai fungsi x dan colt sebagai fungsi y. Selain itu, banyak karung yang di tampung adalah 300 karung dengan masing-masing per truk mampu menampung 15 karung dan colt 10 karung. Sehingga kita bisa menuliskan model matematikanya seperti di bawah ini.
Fungsi banyak karung = 15x + 10y = 300
Fungsi banyak karung = 3x + 2y = 60
Fungsi kuantitas = x + y = 30
Sehingga model matematika soal tersebut adalah F(kuantitas): x + y = 30 dan F(banyak karung): 3x + 2y = 60.
2. Lendra sedang berbelanja ke pasar. Dia membeli beberapa buah rambutan dan pepaya. Jumlah yang dibeli paling sedikit 20 buah di mana buah rambutan maksimal sebanyak 12 buah. Harga rambutan per buah adalah 5 ribu dan pepaya adalah 2 ribu. Ia memiliki uang 40 ribu. Jika Lendra membeli a rambutan dan b pepaya, tentukan bentuk model matematikanya
Pembahasan :
Seperti soal sebelumnya, kita melakukan pemisalan untuk pembelian dan jumlah buah di mana rambutan sebagai fungsi x dan pepaya sebagai fungsi y.
Fungsi pembelian: 5000x + 2000y = 40000
Fungsi pembelian: 5x + 2y = 40
Fungsi jumlah buah: x + y ≥ 20
Fungsi maksimal rambutan: x ≤ 12
Ini bentuk model matematika untuk semua informasi dalam soal tersebut.
3. Diketahui sebuah persamaan x + y = 10 dan diberikan sebuah fungsi seperti di bawah ini
{(x,y)| x ≥ 0; y ≥ 0; 2x + 3y ≤ 8; 3x + 2y ≤ a}
Tentukan nilai a pada fungsi di atas sehingga nilai maksimum x + y = 10
Pembahasan :
Pertama, kita harus menuliskan semua fungsi yang ada secara benar seperti contoh di bawah ini.
x ≥ 0
y ≥ 0
2x + 3y ≤ 8
3x + 2y ≤ a
Kemudian, lakukan penjumlahan dari dua fungsi di atas.
2x + 3y ≤ 8
3x + 2y ≤ a +
5x + 5y ≤ 8 + a
5 (x + y) ≤ 8 + a
5 (10) ≤ 8 + a
50 – 8 ≤ a
42 ≤ a
Sehingga, nilai a ≥ 42 untuk mendapatkan nilai maksimum x + y = 10
4. Punto merupakan seorang pedagang memiliki modal Rp. 1.000.000 untuk membeli anggur dan ketan beras. Harga beli tiap kg anggur adalah Rp. 4000 dan ketan besar adalah Rp. 1600. Gudang Punto hanya bisa menampung 400 kg. Tentukan jumlah anggur dan ketan beras maksimum.
Pembahasan :
Seperti soal-soal sebelumnya, kita dapat melakukan pemisalan pada soal tersebut di mana anggur sebagai fungsi x dan ketan besar sebagai fungsi y. Maka, kita bisa menulis bentuk pertidaksamaannya sebagai berikut.
Fungsi kapasitas: x + y ≤ 400
Fungsi modal: 4000x + 1600y ≤ 1.000.000 disederhanakan menjadi 5x + 2y ≤ 1250
x ≤ 0 ; y ≤ 0
Dari persamaan tersebut, kita dapat membentuk sebuah diagram sesuai dengan nilai maksimum pada tiap persamaan. Kita bisa memasukkan nilai 0 dan 400 dalam tiap persamaan sehingga bisa diketahui titik ekstremnya.
- Titik 1 (0,400) merupakan titik ekstrem namun tidak terdapat fungsi anggur
- Titik 3 (400,0) merupakan titik ekstrem namun tidak terdapat fungsi beras ketan
- Titik 2 ( xb, yb ) menggunakan eliminasi kedua fungsi di atas.
5x + 2y ≤ 1250
x + y ≤ 400 |x2 –
5x + 2y ≤ 1250
2x + 2y ≤ 800 –
3x ≤ 450
Sehingga nilai x adalah 150. Total anggur dan beras ketan adalah 400, sedangkan jumlah angggur adalah 150, maka jumlah beras ketan adalah 250.
Daftar Pustaka




Komentar
Posting Komentar